

УДК 635+634]: 631.963

ББК 41.3: 42.3

И 73

ОРГАНИЗАЦИОННЫЙ КОМИТЕТ:

П.Ф. Кононков	председатель	Россия
В.Н. Макаров	сопредседатель	Россия
М.С. Бунин	сопредседатель	Россия
А.И. Завражнов	сопредседатель	Россия
В.Ф. Пивоваров	сопредседатель	Россия
Ю.В. Трунов	сопредседатель	Россия
•••	Члены оргкомитета:	

Мичуринский государственный аграрный университет:

······ ., p·······	reejaaperseinisin ai papi	j
А.Н. Квочкин		Россия
А.В. Никитин		Россия
А.В. Мешков		Россия
В.И. Терехова		Россия
•		

ВНИИС им. И.В. Мичурина:

Т.В. Жидехина	ученый секретарь	Россия
Н.В. Хромов		Россия

ВНИИССОК:

В.К. Гинс	Россия
М.С. Гинс	Россия
Э.А. Гончарова	Россия

Зарубежные члены оргкомитета:

Н.Г. Гусейнова	Азербайджан
С. Жилинскайте	Литва
П.К. Кинтя	Молдова
В.Н. Меженский	Украина
К. Партосв	Талжикистан
В.В. Скорина	Белоруссия
В. Трайкоский	Швеция

Интродукция нетрадиционных и редких растений: Материалы И 73 VIII Междунар. науч.-метод. конф. 8-12 июня 2008 г. : в 3 т. – Мичуринск : Изд-во Мичуринского госагроуниверситета, 2008. – Т. 2. – 315 с.

ISBN 978-5-94664-138-8

В сборнике опубликованы результаты научных исследований ученых, аспирантов, сотрудников, преподавателей научных учреждений и высших учебных заведений Российской Федераций и других стран, принявших участие в VIII Международной научно-методической конференции, посвященной интродукции нетрадиционных и редких растений, состоявшаяся 8-12 июня 2008 года в Мичуринске-наукограде РФ.

УДК 635+634] : 631.963 ББК 41.3 : 42.3

ISBN 978-5-94664-138-8 (T. 2)

© Коллектив авторов, 2008 ©Издательство ФГОУ ВПО «Мичуринский государственный аграрный университет», 2008

Г.Я. Степанюк. Сохранение редких и исчезающих видов тропических и	
субтропических широт в Сибирском ботаническом саду	133
В.И. Терехова. Горчица салатная - новая перспективная культура	135
Н. Тимофеев, Р. Kowalski, J. Krywuc. Формирование плотности агропо-	
пуляций Leuzea-Rhaponticum carthamoides (Willd.) Iljin в условиях Поль-	
ши и Европейского Севера России	138
Н.П. Тимофеев. Диапазон ростовых реакций Rhaponticum cathamoides	
к температуре и влажности	141
И.В. Тропин, Я.В. Румбаль, Е.Ю. Золотухина, Н.В. Радзинская,	
И.Н. Стадинчук. Экстремофильные растения. Получение высокораз-	
ветвленного крахмала из Galdieria	144
А.Ф. Туманян. Перспективы введения в культуру терескена в аридной	
зоне Прикаспия	146
В.Н. Флоря, П.К. Книтя. Онтогенетические особенности однолетних	
лекарственных растений интродуцированных в республике Молдова	148
Т.И. Фомина. Основные закономерности интродукции декоративных	
видов природной флоры в лесостепи западной Сибири	151
Т.Г. Харнна, С.В. Пулькина. Оценка биологического потенциала мо-	
нарды лимонной (Monarda citriodora cerv.) интродуцируемой на юге	
Томской области	153
Л.А. Хлыпенко, В.Д. Работягов, И.Н. Палий. Биологические и биохи-	
мические особенности Лофанта анисового в условиях южного берега	
Крыма	155
И.А. Чернов, И.А. Дегтярева, Ю.А. Куликов, П.А. Барсуков,	
А.С. Галиуллина, С.В. Максимов. Некоторые аспекты интродукции	
рода Amaranthus L. северной зоне среднего Поволжья	158
И.В. Черных, Т.Г. Рябова, Н.Н. Минина. Интродукция пиретрума	
большого в условиях лесостепной зоны северного Башкортостана	160
3.Ш. Шамсутдинов. Растительные ресурсы производства продовольст-	
вия	163
Г.В. Шипаева, Л.Н. Миронова. Нетрадиционный источник	
Биологические особенности представителей семейства Boraginaceae Juss.	
при интродукции	166
М.И. Ярошевич, Н.Н. Вечер, А.В. Горный. Топинамбур, интродукци-	
онное изучение и культивирование в Белоруссии	169
ГЕНЕТИКА, СЕЛЕКЦИЯ, СЕМЕНОВОДСТВО	
Н.Ш. Алиева, Р.К. Угурлуева. Влияние H_2O_2 на всхожесть семян яч-	
меня в норме и в условиях засоления	173
А.Ш. Ахметова, Л.Н. Миронова. К вопросу проращивания семян тюль-	173
пана	175
С.А. Бекузарова, Э.А. Беркаева. Период покоя и всхожесть семян чер-	1/3
ноголовника многобрачного	177
Т.Н. Беляева, А.С. Прокопьев. Репродуктивная биология некоторых	1//
декоративных почвопокровных растений, перспективных для озеленения	
на юге Томской области	179
	- , ,

ДИАПАЗОН РОСТОВЫХ РЕАКЦИЙ *RHAPONTICUM CARTHAMOIDES* К ТЕМПЕРАТУРЕ И ВЛАЖНОСТИ

Н.П. Тимофеев

КХ БИО, Корхжма, Россия; timfbio@atnet.ru

Введение. Изучение норм реакции нового вида к экстремальным и быстроизменяющимся значениям условий внешней среды важно для успешной его интродукции. На Европейском Севере резкие перепады высоких и низких температур наблюдаются во время весенних и осенних заморозков (апрель-май, сентябрь-октябрь), влажности и высоких температур – во время летнего засушливого сезона (июль-август).

Rhaponticum carthamoides (Willd.) Iljin (левзея сафлоровидная) – крупное травянистое, многолетнее поликарпическое растение. Надземная часть его состоит из вегетативных розеточных и генеративных стеблевых побегов. Цветоносные побеги высотой 110-180 см, несут на себе 28-55 стеблевых листьев длиной от 15-24 см до 2-5 см, отмирающие после фазы цветения. Розеточные листья крупные, черешковые, достигают 80-120 см по длине и 25-43 см по ширине. Появление новых розеточных листьев, их взросление и отмирание не приурочено к определенным фазам развития, они функционируют в течение всего вегетационного периода, меняя другдруга во времени.

Целью исследований являлось изучение норм реакции ростовых процессов *R. carthamoides* к изменяющимся факторам среды обитания, исходя из температуры и влажности вегетационного периода.

Природно-климатические условия. Особенностями климата югавостока Архангельской области (62 °с.ш.) являются короткий безморозный период и избыточное увлажнение. Устойчивый снежный покров появляется 11-16 ноября и лежит до 17-19 апреля. Продолжительность вегетационного периода 165-186 дней, в т.ч. безморозного 105 дней.

Проникающие на территорию воздушные арктические массы служат причиной поздневесенних заморозков. Средняя температура самого теплого месяца +17.4 °C (июль). Среднегодовые суммы температур выше 15 °C равны 911 °C (54-57 дней); 10 °C – 1577 °C (107-110 дней); 5 °C – 1936 °C

(153 дня). Относительная влажность воздуха в полуденное время равна 54-62 %. В отдельные засушливые периоды влажность днем может опускаться до 25-35 % и ниже.

Методы исследований. Изучали растения молодого и среднего генеративного возраста, произрастающие в условиях агропопуляций на супесчаной почве. Среднесуточный рост побегов измеряли с интервалом в 5-6 дней у случайно выбираемых 15-20 типичных особей. Динамику роста учитывали, исходя из высоты наиболее развитых побегов. Относительную влажность и температуру воздуха в фитоценозе измеряли портативным цифровым прибором PDT 300. Фиксировали как текущие значения, так и минимальные суточные пики температуры на основе запоминающего устройства прибора.

Результаты исследований. В ходе полевых исследований выявлено, что к началу момента вегетации почки возобновления *R. carthamoides* увеличиваются в размерах 1.5-2.0 раза, еще находясь под снежным покровом. Начало массового отрастания вегетативных побегов, в зависимости от климатических особенностей последних 17 лет (1990-2007 гт.), наблюдалось в сроки между 17 апреля и 8 мая, через 2-3 дня после схода снежного покрова. Через 5-7 дней начинается видимый рост генеративных побегов из укрупненной флоральной почки,

В этот период часто бывают возвраты холодов с повторным выпадением снега и многократные заморозки. Отрицательные температуры до -5 °C *R carthamoides* выдерживает без видимых последствий. При температурах -8...-10 °C наблюдается повреждение верхушки листовых пластинок. Через 4-5 дней поврежденные участки восстанавливаются, заменяясь новообразованной тканью. У генеративных побегов при заморозках -7...-10 °C апикальные части (соцветия) необратимо повреждаются, чернеют и отмирают. Осенние заморозки, начинающиеся в конце августа-начале сентября и длящиеся до конца октября, не причиняют вреда вегетирующим розеточным листьям.

Подробное исследование зависимости прироста побегов *R. carthamoides* от значений температуры и влажности проведено у 6-летних растений. В ранневесенний период отрастания здесь наблюдаются суточные перепады температуры — 15-18 °C в дневное время, 2-7 °C в ночные часы. Влажность в дневное-вечернее время варьирует в пределах 56-87 %. Среднесуточный прирост вегетативных побегов в этот период составляет 2.1 см (табл. 1). На фоне низких дневных температур (7-10 °C) прирост снижается, но незначительно — до 1.7 см/сутки.

Максимальный среднесуточный прирост – 5.1 см/сутки в течение 10дневного интервала, зафиксирован при температуре 20-25 °С и влажности 40-65 %. В условиях экстремальных факторов – повторного выпадения снега и многократных заморозках на почве с интенсивностью -2...-6 °С, рост растений полностью не прекращался и составлял около 0.5 см/сутки, что было обусловлено использованием растениями краткосрочного подъема дневной температуры до 3-5 °C. Данная величина близка к показателям прироста во 2-3-й декаде июня, когда температура воздуха находится в пределах оптимальных 20-25 °C.

Таблица 1 – Среднесуточный прирост вегетативных побегов R. carthamoides в зависимости от температуры и влажности воздуха, см/сутки

Показатели	Календарные даты							
	24.04	14.05	18.05	28.05	06.06	12.06	18.06	23.06
Сроки вегетации, дней	7	27	31	41	50	56	62	67
Интервал, суток	7	20	4	10	9	6	5	5
1 Tominopan / par Antomit	15-18							23-30
Влажность воздуха, %	56-87	78-93	62-73	50-65	46-58	42-48	27-32	23-26
Прирост, см/сутки	2.1	0.5	1.7	5.1	1.5	0.5	0.4	0.1

Примечание: • выпадение снега и 5-кратные заморозки на почве (-2 ... -6 °C).

Если в первом случае рост побегов был ограничен очень низкой температурой, то во втором случае тормозящим фактором явилось снижение влажности воздуха с 78-93 % до 23-26 %, приведший к истощению влаги в корнеобитаемом слое почвы (2.5-3.0 %).

Для генеративных побегов в начале отрастания наблюдается более замедленный рост по сравнению с вегетативными. Скорости роста побегов обоих типов уравниваются примерно с 35-го по 38-й день вегетации. В дальнейшем, на фоне летнего торможения прироста у вегетативных побегов, происходит стремительное удлинение цветоносов. В периоды выпадения осадков (дождей) прирост увеличивается до 3.7-4.4 см в сутки у 3-летних, до 6.2-6.9 см/сутки для 9-летних растений. С достижением фазы цветения темпы роста генеративных побегов резко уменьшаются, а с началом плодоношения прекращаются.

Выводы:

R. carthamoides характеризуется широким диапазоном адаптивных ростовых реакций в ответ на критические параметры условий внешней среды. На Европейском Севере начало массового отрастания растений наблюдается непосредственно после схода снежного покрова. Оптимальной для максимальных приростов является температура 20-25 °C и относительная влажность воздуха в дневное время 50-65 %. В этот период они достигают у вегетативных побегов 5.1 см/сутки, у генеративных — 6.2-6.9 см/сутки.

Прирост побегов не прекращается и в условиях действия экстремальных факторов – повторного выпадения снега и многократных заморозках с интенсивностью -2...-6 °C, а также снижении влажности воздуха и почвы

до минимальных значений (23-26 % и 3 % соответственно). Заморозки с интенсивностью до -5 °C не причиняют вреда растениям. При температурах -8...-10 °C повреждаются апикальные зоны роста. Поврежденные участки листовых органов через 4-5 дней восстанавливаются, заменяясь новообразованной тканью. У генеративных побегов поврежденные органы (соцветия) чернеют и отмирают.

Благодарности. Работа выполнена финансовой поддержке гранта Администрации Архангельской области и РФФИ (№ 08-04-98840).