

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ
РОССИЙСКАЯ АКАДЕМИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК
ОБЩЕРОССИЙСКАЯ АКАДЕМИЯ НЕТРАДИЦИОННЫХ И РЕДКИХ РАСТЕНИЙ
МИЧУРИНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ
ВСЕРОССИЙСКИЙ НИИ САДОВОДСТВА ым. И.В. МИЧУРИНА
ВСЕРОССИЙСКИЙ НИИ СЕЛЕКЦИИ И СЕМЕНОВОДСТВА ОВОЩНЫХ КУЛЬТУР
АДМИНИСТРАЦИЯ г. МИЧУРИНСКА-НАУКОГРАДА РФ

ИНТРОДУКЦИЯ НЕТРАДИЦИОННЫХ И РЕДКИХ РАСТЕНИЙ

Материалы VIII Международной научно-методической конференции 8-12 июня 2008 г.

TOM III

Мичуринск - наукоград РФ 2008

УДК 635 + 634]: 631.963

ББК 41.3:42.3

И 73

ОРГАНИЗАЦИОННЫЙ КОМИТЕТ:

П.Ф. Кононков	председатель	Россия
В.Н. Макаров	сопредседатель	Россия
М.С. Бунип	сопредседатель	Россия
А.И. Завражнов	сопредседатель	Россия
В.Ф. Пивоваров	сопредседатель	Россия
Ю.В. Трунов	сопредседатель	Россия
• •	••	

Члены оргкомитета:

Мичуринский государственный аграрный университет:

А.Н. Квочкин	¥	•		• •	Россия
А.В. Никитин					Россия
А.В. Мешков					Россия
В.И. Терехова					Россия
		 	110 1		

ВНИИС им. И.В. Мичурина:

Т.В. Жидехина ученый секретарь Россия **Н.В. Хромов** Россия

внииссок:

 В.К. Гинс
 Россия

 М.С. Гинс
 Россия

 Э.А. Гончарова
 Россия

Зарубежные члены оргкомитета:

Н.Г. Гусейнова	Азербайджан
С. Жилинскайте	Литва
П.К. Кинтя	Молдова
В.Н. Меженский	Украина
К. Партоев	Таджикистан
В.В. Скорина	Белоруссия
В. Трайкоский	Швеция

И 73 Интродукция нетрадиционных и редких растений: Материалы

¹⁷³ VIII Междунар. науч. - метод. конф. 8 - 12 июня 2008 г. : в 3 т. – Мичуринск : Изд-во Мичуринского госагроуниверситета, 2008. – Т. 3. – 284 с.

ISBN 978-5-94664-138-8 (T. 3)

В сборнике опубликованы результаты научных исследований ученых, аспирантов, сотрудников, преподавателей научных учреждений и высших учебных заведений Российской Федераций и других стран, принявших участие в VIII Международной научно-методической конференции, посвященной интродукции нетрадиционных и редких растений, состоявшаяся 8-12 июня 2008 года в Мичуринске-наукограде РФ.

УДК 635 + 634] : 631.963 ББК 41.3:42.3

ISBN 978-5-94664-138-8 (Т. 3) © Коллектив авторов, 2008 ©Издательство ФГОУ ВПО «Мичуринский государственный аграрный университет», 2008

М.С. Гинс, М.Е. Кудинова. Разработка элементов технологии выращива-	
ния семян амаранта с повышенным содержанием белка	172
А.Д. Гусейнова. Перспективы и пути рационального использования расти-	
тельности галофитных пустынь Кобыстана (Азербайджан)	175
В.М. Ковылин, А.Р. Бухарова, А.Ф. Бухаров. Испытание новых видов ор-	
ганических удобрений при выращивании перца в условиях пленочной теп-	
лицы	177
М.В. Колесникова, Н.В. Безлер. Бнологическая активность микромицетов-	
целлюлозолитыков при совместной запашке с соломой озимой пшеницы	180
Л.В. Лаврентьева, В.С, Мошнякова, Е.В. Кобешева, С.И. Михайлова.	
Микробиологическая характеристика корневой зоны сон как фактора,	
влияющего на воспроизводство растений и плодородие почвы	182
Н.В. Литвиненко. Влияние размера посадочного материала и площади пи-	
тания на растения озимого чеснока	185
3.Дж. Мамедова. Бобовые – как ценные растения для озеленительных работ	188
Л.И. Мансурова, В.Г. Кириченко. Продуктивность сортов перца сладкого	
при вырашивании в открытом грунте в условиях Самарской области	190
Г.В. Михайлов. Оценка эффективности сорто-микродного взаимодействия	
в семенных посевах вики посевной зерофуражного назначения	193
А.И. Морозов. Зависимость продуктивности сортов мяты перечной от сро-	
ков уборки при выращивании в средней полосе России	195
А.И. Морозов, Н.Т. Конон, В.Б. Загуменников. Отзывчивость сортов мяты	
перечной к окультуриванию дерново-подзолистой почвы	198
Ю.А. Нестерова. Фитопатологическая характеристика картофеля в услови-	
ях Воронежской областн	202
Н.В. Николайченко, О.С. Башинская. Энергосберегающая технология	
возделывания растропши пятнистой и пайзы (ежовник хлебный) на южных	
черноземах Саратовского Заволжья	204
В.В. Маевский, Н.В. Николайченко, Х.Х. Амерханов, В.С. Горбунов. Ди-	
корастущие кормовые виды, рекомендуемые для интродукции	206
В.П. Орищенко, Ю.А. Чикии. Особенности выращивания сои на юге Том-	
ской области	208
В.П. Попов, Л.Л. Жарова, В.В. Введенский. Накопление основных эле-	
ментов минерального питания в стернекорневых остатках зерновых и бобо-	
вых культур в условиях юга Московской области	211
В.П. Попов, Л.Л. Жарова, В.В. Введенский. Влияние агротехнических	
факторов на фенологию сои в условия юга Московской области	212
А.А.Сиротин, С.С. Сиротина. Разработка технологии выращивания интро-	
дуцента адониса летнего (adonis aestivalis 1.) как источника астаксантина	216
М.А. Сумская, О.И. Бородкин. Основные культуры свекловичного сево-	
оборота и гумификационные процессы в почве в конце вегстационного пе-	
риода	219
Н.П. Тимофеев. Взаимоотношения насекомых и растений с гормональной	
активностью (роды rhaponticum, stemmacantha, serratula и silene)	221
Н.П. Тимофеев. Интегральная оценка промышленных плантаций Левзеи	
сафлоровидной по накоплению экстрактивных веществ	224
О.В. Трухан, Н.И. Переправо. Влияние сроков осеннего подкашивания на	
развитие растений и формирование урожайности семян овсяницы красной	227
Н.В. Чечеткина. Содержание и распределение тожелых металлов в продукции зо-	
ленных культур в условиях защищенного грунта	229
Н.В. Шелепина. Технологические особенности современных морфотипов	
гороха	234

ИНТЕГРАЛЬНАЯ ОЦЕНКА ПРОМЫШЛЕННЫХ ПЛАНТАЦИЙ ЛЕВЗЕИ САФЛОРОВИДНОЙ ПО НАКОПЛЕНИЮ ЭКСГРАКТИВНЫХ ВЕЩЕСТВ

Н.П. Тимофеев

КХ БИО, Коряжма, Россия

Введение. Rhaponticum carthamoides (Willd.) Iljin (Leuzea carthamoides DC., левзея сафлоровидная, рапонтикум, большеголовник альпийский, маралий корень) — многолетний вид лекарственного назначения из сем. Asteraceae. По результатам длительных исследований R carthamoides и препараты на его основе занесены в Государственную фармакопею СССР IX-XI изданий (1961, 1968, 1987, 1990), Госфармакопею (2003) и Реестр лекарственных средств России (1995, 1998).

О фармакологической ценности и практической значимости лекарственного сырья можно судить по сумме экстрактивных веществ, извлекаемых в водные и спиртовые настои. Исходя из нормативов качества, содержание экстрактивных веществ в лекарственном сырье *R. carthamoides* должно составлять не менее 13 % (Корневище..., 1990).

До настоящего времени в фармацевтической промышленности использовались только подземные органы *R. carthamoides*. Недостатками использования корневищ являются: невозобновляемые источники растительного сырья, сложность и трудоемкость операций по уборке, очистке от загрязнений, промывке и сушке. В листовых органах, являющихся массовыми элементами в структуре надземной фитомассы (Тимофеев и др., 1998), может накапливаться до 40 % экстрактивных веществ (Головко и др., 1996), что показывает перспективность использования их в качестве источника биологически активных веществ.

Цели и задачи. Исходя из потребности выявить потенциал R. carthamoides по выходу промышленной продукции с единицы площади, нами изучено накопление водо- и спирторастворимых веществ в фитомассе растения на основных почвах Европейского Севера.

Материал и методика. Исследования проводили на юго-востоке Архангельской области, в подзоне средней тайги. Объектами служили 4 агропопуляции *R. carthamoides* среднегенеративного возраста, заложенные на основных почвенных разновидностях природной зоны: а) супесчаные дерново-среднеподзолистые, подстилаемые средними суглинками; б) песчаные на водно-ледниковых песчаных отложениях; в) торфянистоподзолистые поверхностно-глееватые осушенные, на двучленных отложениях, с примесью песка в верхнем и тяжелого суглинка — в нижнем горизонте; г) суглинистые дерново-слабоподзолистые.

На объектах в предыдущие 3 года и во время исследований минеральные и органические удобрения, регуляторы роста растений не применя-

лись. Календарный возраст растений 8-11 годы жизни. Образцы для исследования продуктивности и структуры фитомассы отбирали во время фазы бутонизации, по трансектам, в 6-10-кратной повторности. В структуре надземной фитомассы выделяли розеточные и стеблевые листья, стебли и соцветия. Содержание экстрактивных веществ определяли путем экстрагирования дистиллированной водой и 70 % этиловым спиртом (Общие методы, 1990).

Сравнительную интегральную оценку эффективности вариантов опыта проводили в масштабах промышленной плантации. Учитывали оптимальную плотность вида, равной 24 тыс. экз/га (Тимофеев, 2005), продуктивность, массовую долю листьев в структуре фитомассы, содержание в них экстрактивных веществ.

Результаты и их обсуждение. Экономически успешное возделывание вида в природно-климатической зоне базируется на правильном выборе участка для закладки плантации. Почвенный фактор и ее составляющие являются определяющими в судьбе агропопуляции на все годы онтогенеза и не могут после засева кардинально изменены.

Наибольшая величина надземной массы в условиях Европейского Севера формируется на супесчаных почвах и торфяниках — 208.7 и 152.7г/особь соответственно, наименьшая на суглинках — 88.8 г (табл. 1). Структура фитомассы на 75.1 % представлена листовыми органами, в т.ч. на 67.2 % розеточными и 8.0 % стеблевыми листьями. Доля стеблей незначительная и составляет 19.2 %, соцветий — 5.7 %. Показатель величины облиственности мало зависит от почвенно-экологических условий произрастания (коэффициент вариации по популяциям 6.5 %), хотя величина продуктивности при этом варьирует на 38.1 %. Наибольшей вариабельностью обладают элементы генеративных побегов (стебли и стеблевые листья — 21.6-29.6 %, соцветия — 43 %).

Содержание экстрактивных веществ в листовых органах во время бутонизации составляет в среднем 42.2 % при водной и 36.8 % при спиртовой экстракции (табл.2). Повышенный выход экстрактов зафиксирован на супеси (44.2 и 42.4 %), наименьший — на торфянике (39.2 и 31.2 %). В целом вариабельность по почвенным участкам незначительная — 5.0 % для водо- и 12.5 % для спирторастворимых веществ.

Усредненная величина выхода товарной продукции с 1 га площади, представленной листовыми органами, равна около 1060 кг при водной (H₂0) и 940 кг при спиртовой (EtOH) экстракции (табл. 2). Среди факторов влияния наиболее значимым является продуктивность (вариабельность 39.6%). Наибольший выход экстрактивных веществ в расчете на 1 га получен для супесчаных почв — 1720 кг водного и 1650 кг спиртового экстракта. На торфяниках выход экстракта меньше в 1.77-2.12, песках в 1.96-2.22, суглинках 2.53-2.78 раза.

Таблица 1 – Продуктивность и структура надземной части R. carthamoides, культивируемого на почвенных разновидностях Европейского Севера

Почвенные	Воз-	Фито-	C ₁	й части,	і части, %		
разновидности	раст,	Macca	INCIORNE OPIANN			стеб-	con-
	лет	г особи,	всего	розе- точные	стебле- вые	אנת	ветия
Торфяник	11	152.7	68.2	57.1	11.1	24.7	7.1
Суглинок	8	88.8	75.2	67.0	8.2	17.2	7.6
Супесь	9	208.7	79.1	72.2	6.9	15.1	5.8
Песок	11	108.6	78.0	72.4	5.6	19.8	2.2
Среднее по популяциям	-	139.7	75.1	67.2	8.0	19.2	5.7
Коэф. вариации, С _V (%)	-	38.1	6.5	10.7	29.6	21.6	43.0

Таблица 2 – Накопление экстрактивных веществ в листовых органах R carthamoides

Почвенные разновидности	Воз-		ктивные тва, %	Фитомасса		Выход экстракта с 1 га, кг	
	лет	H₂O	EtOH	особи, г	1 га, кг	H₂O	EtOH
Торфяник	11	39.2	31.2	104.0	2 496	978	779
Суглинок	8	42.6	37.2	66.8	1 603	683	596
Супесь	9	44.2	42.4	162.8	3 907	1 727	1 656
Песок	11	42.7	36.3	85.8	2 059	879	747
Среднее по популяциям	-	42.2	36.8	104.8	2 515	1 066	944
Коэф. вариации, С _V (%)		5.0	12.5	39.6	39.6	42.8	50.9

Выводы

В условиях Европейского Севера содержание экстрактивных веществ в листовых органах *R. carthamoides* составляет в среднем 42.2 % при водной и 36.8 % при спиртовой экстракции, что в 3.2 и 2.8 выше нормативов качества. Почвенно-экологические условия оказывают сильное влияние на продуктивность, и незначительное на облиственность и выход экстрактивных веществ. Наибольший выход экстрактов как товарной продукции промышленного назначения получен на супесчаных почвах — 1720 кг/га водного и 1650 кг/га спиртового экстракта. На других почвах выход меньше 1.7-2.8 раза.

Работа выполнена финансовой поддержке гранта Администрации Архангельской области и РФФИ (№ 08-04-98840).