ИССЛЕДОВАНИЕ ВИТАМИНОВ В ЛЕКАРСТВЕННОМ СЫРЬЕ ИЗ ЛИСТЬЕВ ЛЕВЗЕИ САФЛОРОВИДНОЙ ФАРМАКОПЕЙНЫМИ МЕТОДАМИ

Н.П. Тимофеев

КХ БИО, Коряжма, 165650, Россия; timfbio@atnet.ru

Введение. Витамины в организме человека являются незаменимыми фармакологически активными веществами, входят в состав каталитических центров ферментов и участвуют в биосинтезе стероидов, белков и других витаминов; в защите тканей ЦНС, сердца и мышц. При этом синтез витаминов в растениях и распределение их по разным органам специфично для каждого вида. По результатам сравнительных испытаний между экстрактом левзеи из корней с корневищами и экстрактом из листьев (вытяжка 1:10), проведенных в Институте мозга человека им. Н.П. Бехтеревой РАН (г. Санкт-Петербург), надземные листьевые части левзеи (Leuzea carthamoides) имели многократное преимущество перед подземными корнями по комплексной стресс-защитной активности — 66 баллов против 16 (Барнаулов, 2015).

Согласно последним публикациям о конъюгации аналогов экдистерона с витаминами и порфирином (Савченко и др., 2013; Slama и др., 2016), и соотнесенных с молекулярными механизмами активации рецепторного комплекса экдистероидов через кофакторы (Тимофеев, 2005), критическая разница в сравнительной активности препаратов из левзеи сафлоровидной может быть обусловлена не только уровнем содержания экдистероидов, но и комплексным взаимодействием их с витаминами и стрессовыми белками из растительного сырья.

Цели и задачи исследований. При анализе научных публикаций, включая монографии и обзоры по химсоставу растений рода *Rhaponticum* (Растительные ресурсы, 1993; Постников, 1995; Kokoska & Janovska, 2009; Zhang, 2010; Wang, 2013), выяснилось, что накопление и содержание витаминов у вида практически не изучено. Из 23 известных витаминов и витаминоподобных соединений, опубликованные данные касаются лишь макровитаминов А, С и Р. В связи с чем возникает необходимость исследования состава витаминов из сухих листьевых частей левзеи, являющихся лекарственным сырьем (ГФ РБ, 2007, с. 368-369).

Резульматы и их обсуждение. Витамин A (ретинол) — содержание его в листьях левзеи 650 мг/кг (табл. 1), что соответствует максимальным показателям у других авторов (628-669 мг/кг). Содержание хлорофилла 0.9 %; витамина P (флавоноиды) 4 %, что также близко к максимальным уровням для листьев левзеи в литературе. Витамин E (токоферол) — 62 мг/кг; витамин K (филлохинон) — 26.5 мг/кг; витамин C (аскорбиновая кислота) — 620 мг/кг.

Витамин D в сухих листьях левзеи не обнаружили, однако его функции в организме, как полагают (Тоth и др., 2010), могут выполнять экдистерон и его аналоги. Экдистероидов в листьях левзеи оказалось 6200 мг/кг, при норме 1000 мг/кг (ФС 42-2707-99; ГФ РБ, 2007).

Из других в левзее интерес представляют высокоактивные незаменимые витамины группы B — тиамин и рибофлавин, а также пиридоксин, необходимые человеку по 2-7 мг в сутки (Спиричев, 2004). Уровни их в листьях левзеи весьма высокие: $B_1 = 8.8$ мг/кг; $B_2 = 4.6$ мг/кг; $B_6 = 2.8$ мг/кг; а ниацин или витамин $B_3 = 115.2$ мг/кг. Еще три витамина в листьях левзеи обнаружили с относительно невысоким содержанием: $B_5 = 5.6$ мг/кг (пантотеновая кислота), $B_7 = 0.06$ мг/кг (биотин) и $B_9 = 0.34$ мг/кг (фолацин). Другие два исследованных вещества — полувитамины: инозит или витамин $B_8 = 1453$ мг/кг; а также кобаламин B_{12} , который в сухих листьях левзеи не обнаружили.

T-6 1	7		
таолина т	Содержание витаминов и з	эклистероилов в су	ухих пистьях певзеи

Наименование	Условное обозначение	Ед-ца изм-я	Содержание , мг/кг	*Потреб- ность, мг
Экдистерон и аналоги	ФЭС	мг/кг	6200.0	0.3-0.5**
Ретинол	Витамин А	$M\Gamma/K\Gamma$	650.0	0.5-1
Токоферол	Витамин Е	мг/кг	62.0	8-15
Филлохинон	Витамин К	$M\Gamma/K\Gamma$	26.5	0.1
Эргокальциферол	Витамин D	мг/кг	_	0.01
Аскорбиновая к-та	Витамин С	мг/кг	620.0	70-100
Флавоноиды	Витамин Р	%	4.0	30-50
Тиамин	Витамин В1	мг/кг	8.8	1.2-2.0
Рибофлавин	Витамин В2	мг/кг	4.6	1.8-2.5
Пиридоксин	Витамин В ₆	$M\Gamma/K\Gamma$	2.8	1.8-2.0
Ниацин	Витамин В ₃ (РР)	мг/кг	115.2	15-20
Пантотеновая к-та	Витамин В5	$M\Gamma/K\Gamma$	5.6	4-7
Биотин	Витамин $B_7(H)$	мг/кг	0.06	0.03-0.10
Фолацин	Витамин В ₉ (Вс)	мг/кг	0.34	0.2-0.4
Инозит	Витамин B_8	мг/кг	1453.0	500-1000
Кобаламин	Витамин В ₁₂	мкг/кг	_	3.0

Примечание. *Рекомендуемая суточная норма для трудоспособных людей в возрасте 18-60 лет; средний по тяжести труд (Спиричев, 2004); **Соответствует дозе экдистерона из неочищенных составов листьев левзеи $10^{-11} \, \mathrm{M} = 0{,}005 \, \mathrm{mr/kr}$ массы (Тимофеев, 2005).

Заключение: Исследован состав и уровни содержания 15 витаминов в листьях левзеи сафлоровидной методами Госфармакопеи. Обнаружено высокое содержание 4 водорастворимых витаминов: тиамин $B_1 = 8.8$ мг/кг; рибофлавин $B_2 = 4,6$ мг/кг; пиридоксин $B_6 = 2.8$ мг/кг; ниацин $B_3 = 115.2$ мг/кг. По жирорастворимым витаминам выявлены высокие уровни витамина A = 650 мг/кг (ретинол); E = 62 мг/кг (токоферол); E = 62 мг/кг (филлохинон).

Одновременно методом ОФ-ВЭЖХ в листьях левзеи найдено 6200 мг/кг экдистероидов, что в 10 тысяч раз превышает уровни в других фармакопейных растениях. В сравнении с корнями выход ФЭС из листьев примерно в 10-15 раз выше (0.62% против 0.03-0.08%).

Предполагается, что значительно более высокая активность препаратов из листьевых частей левзеи может быть обусловлена не только высоким уровнем аналогов экдистерона, но и комплексным взаимодействием их с витаминами, ионами микроэлементов, пептидами и стрессовыми белками, выступающих в качестве кофакторов активности экдистероидов.

Литература

- 1. О.Д.Барнаулов. *Традиц. мед.* **2015**, *3* (42), 52-56.
- 2. Растительные ресурсы СССР: Цветковые растения, их химический состав, использование. Т. 7. Сем. *Asteraceae. Rhaponticum carthamoides*. СПб, Наука, **1993**, 161-163.
- 3. Р.Г.Савченко и др. *Журн. орг. хим.* **2013,** 49 (12), 825-829.
- 4. В.Б.Спиричев. Витамины, витаминоподобные и минеральные вещества: Справочник. М., МЦФЭР, **2004**, 240 с.
- 5. Н.П.Тимофеев. *Мед. науки.* **2005**, 4, 26-66.