New technology and production efficiency of high-quality plant raw materials *Rhaponticum carthamoides* [Anabolic and immune-stimulating effects of low doses *Leuzea carthamoides* in animal industry]. *Тимофеев Н.П.* Новая технология и производственная эффективность высококачественного растительного сырья рапонтика сафлоровидного / Новые и нетрадиционные растения и перспективы их практического использования. Мат-лы III Межд. симпозиума. – Пущино, РАСХН, 1999, Том 3. – С. 465-467.

НОВАЯ ТЕХНОЛОГИЯ И ПРОИЗВОДСТВЕННАЯ ЭФФЕКТИВНОСТЬ ВЫСОКОКАЧЕСТВЕННОГО РАСТИТЕЛЬНОГО СЫРЬЯ РАПОНТИКА САФЛОРОВИДНОГО

Н.П.Тимофеев

г.Коряжми, Россия

Рапонтик сафлоровидный может использоваться в непереработанном виде как кормовая оздоровительная добавка для всех видов животных, пушных зверей и птиц. Травяная мука из нее стимулирует репродуктивную функцию, повышает надои и жирность молока, усиливает синтез протеина в организме животных. Фитомасса нетоксична, нормы скармливания могут достигать очень больших величин без отрицательных последствий. Экдистерондосодержащие препараты обеспечивают неспецифическую иммунную резистентность, адаптогенность и гибкость организма животных к экстремальным факторам промышленных систем содержания: микробновирусной агрессии, дефицита естественного освещения, повышенной влажности и загазованности, неполноценного кормления по незаменимым аминокислотам, витаминам и т.д.

Эти факторы, являясь теневой стороной индустриальных технологий, ведут к высокому уровню смертности и низким среднесуточным прироста, существенно удорожают себестоимость продукции. Даже в относительно благополучные 1990-92 гг. в среднем по Российской Федерации среднесуточный прирост свиней составлял 215-233 г, крупного рогатого скота 400-423 г, среднегодовой надой молока 2741 кг. Массовые незаразные и условно-незаразные болезни, удельный вес которых составляет 95-98% в целом по стране от всех болезней скота и птиц, ведут к большим величинам отхода нарождающегося молодняка.

Применяемые в практике животноводства дозы рапонтика являются эмпирическими и составляют от 250 г до 1 кг в сутки на одну голову по сухому веществу. Общепринятые сроки уборки фитомассы характеризуются наибольшим выходом с единицы площади, но очень низким качеством по содержанию действующего вещества – 20-гидроксиэкдизона (20E).

Определение эффективно действующих малых доз экдистероидосодержащего растительного сырья из *Rhaponticum carthamoides* является весьма актуальной задачей для народного хозяйства страны. Мы провели широкие производственные испытания высококачественного сырья из рапонтика сафлоровидного в различных отраслях животноводства, полученного по новой технологии производства. В производственных опытах использовалась надземная фитомасса растений, собираемая из производственной плантации в возрасте 4-7 лет. Работа проведена в два этапа.

Лабораторная часть. На первом этале определялась эффективно действующая концентрация малых доз на прирост живой массы беспородных белых мышей. Были подобраны три группы животных со средней массой 23,0-23,5 г, которым однократно и внутримышечно вводили физиологический раствор с определенной концентрацией 20-гидроксиэкдизона. Анаболический эффект

оценивали каждые десять дней последействия по динамике изменения живой массы (табл.1).

№ группы	Доза		Время последействия, дни			Условная
	MI/KT	20E	10	20	30	суточная доза
1	контроль		100.4	100.4	103.4	_ 8
2	0.387	8·10 ⁻¹⁰ M	89.6	92.2	110.0	2.7·10 ⁻¹¹ M
3	0.035	7·10 ^{·11} M ·	98.7	104.3	112.0	2.4·10 ⁻¹² M

Табл. 1. Анаболический эффект малых доз препаратов рапонтика на белых мышах

В первые 10 дней отмечали снижение массы тела опытных животных, более выраженное у 2-й группы. В 3-й группе, получавшей в 11 раз более разведенную концентрацию, наблюдалась небольшая потеря веса и равномерный анаболический эффект в последующем. Через 30 дней опытные животные обеих групп превышали контрольную по массе тела на 10-12%. От различающихся на порядок концентраций 20Е получили сходный конечный анаболический эффект.

С экономической точки зрения предпочтителен вариант № 3, где разовая доза, пересчитанная на среднесуточную, составляет 1 мкт/кг (2·10⁻¹² М). Суточные дозы, рассчитанные на фитомассу из надземных органов рапонтика, составляют около 2-20 г на 1 т живой массы.

Производственные опыты. На втором этапе были проведены широкомасштабные опыты в различных отраслях животноводства. Испытывались дозы в виде высушенной фитомассы, травяной муки, экстрактов — из расчета 2-20 г на 1 т живого веса животных, птиц и пчелиной семьи.

Свиноводство. На свиноводческом комплексе ОАО «Котласский ЦБК» в течение 3 месяцев применяли ежедневно по 20 г гранулированной витаминно-травяной муки на 1 т живого веса супоросным свиноматкам, откормочному поголовью и поросятам в возрасте 2-4 месяца. Биологически активная доза составляет 2·10⁻¹¹ М по 20Е. Тип кормления свиней концентратный, с использованием пищевых отходов. Режим содержания промышленное клеточное. Поголовье −1633. В ращоне выявлен дефицит концентрации обменной энергии и незаменимых аминокислот.

Производственный эффект оценивался за 3 месяца прямого воздействия на фоне предыдущих двух лет. Внедрение оздоровительных лечебных добавок позволило сделать рывок в области улучшения хозяйственных показателей: на 40,6% по валовому среднемесячному приросту стада; по снижению падежа — более чем в 2 раза (табл.2).

Табл. 2. Результаты внедрения экдистерондосодержащего сырья из рапонтика сафлоровидного в рацион кормления свиней (хозяйственные среднемесячные показатели)

		Обычный	Добавка 20Е		
Показатели	1991 год	1992 год		1993 год	
		за год	3 месяца до опыта	за год	90-й день опыта
Валовый привес, т	10,5	11,4	9,8-11,2-10,2	15,4	15,3
Ср. суточный прирост на откорме, г	339	433	280-399-388	507	623
Смертность поросят, %	21,2	28,7	22,3-23,1-27,6	9-12	24,3

Прямое действие экдистероидосодержащего сырья отразилось на увеличении среднесуточных приростов животных в цехе откорма с 338 до 623 г к концу 3-го месяца кормления. Резкое снижение смертности молодняка произошло на 2-м месяце последействия с 28,7 до 12,5% и удерживалась в дальнейшем в пределах 9-12% (8,0-13,1%). Израсходовано в опыте 400 кг растительной добавки из рапонтика на сумму 0,3 млн. руб. Получено дополнительной продукции в виде мяса-свинины на сумму 72,1 млн. руб. Коэффициент эффективности вложенных затрат 240,3.

Птицеводство. Испытывали надземную биомассу и жидкий экстракт на птицефабрике «Сольвычегодская» Архангельской области. Производственные цеха с численностью 32-60 тысяч поголовья разделялись на два зала, составляющих опытную и контрольную группу. В опытной группе молодняк птиц в течение 40 дней получал дополнительно к рациону 20 г высушенной фитомассы в расчете на 1 т живого веса (16,8 мкг/кг 20Е, или 10⁻¹¹ M).

Получен следующий анаболический эффект на 40-й день (в сравнении с контролем): курочки 136,9%; петушки 140,0%. Последействие на 30-й день составило соответственно 114,2% и 115,5%. Иммунно-резистентный эффект сказался на лучшей сохранности молодняка птиц – уровень падежа у петушков снизился с 3,73 до 2,5%, у курочек с 3,25 до 2,08%.

Крупный рогатый скот. Надземная биомасса ежегодно закладывалась в качестве одного из компонента в зерносенажную массу из расчета 1,0-1,5%. В сложных смесях вместе с ним использовались такие культуры, как клевер красный и розовый, люцерна желтая, козлятник восточный, тимофеевка луговая, ежа сборная, ячмень в молочно-восковой спелости, крестоцветные (рапс, тифон, горчица белая, редька масличная), борщевик Сосновского, топинамбур.

Применение нетрадиционных кормово-лечебных трав положительно сказалось на приближении крупного рогатого скота к генетически обусловленной норме продуктивности и воспроизводительной способности. За 1997-98 гг. удой на 1 фуражную корову составил 4130-4250 кг, выход телят в расчете на 100 коров 100-102, среднесуточный прирост на откорме 676-718 г.

Пчеловодство. Исходя из эффективной дозы 2·10⁻¹¹ М, продолжено ее испытание для усиления лета пчел в засушливый и неблагополучный по медосбору 1995 год. 5 мл экдистеронового экстракта левзеи разбавлялось в 3 л сахарного сиропа и разносилось на 40 пчелиных семей. Доза составляла 10 мкг/кг или 2·10⁻¹¹ М. Пасека расположена в городе, в 3 км от кормового-медоносного конвейера. После скармливания экстракта наблюдалось удлинение активного лета пчел с 18 до 21 часа вечера. Величина ежесуточного медосбора возросла по сравнению с контролем в 3,0-3,5 раза и составила 0,9-1,1 кг на каждый двенадцатирамочный улей (в контроле 0,25-0,35 кг).

Выводы. Производственные испытания подтвердили высокую экономическую эффективность малых доз высококачественных препаратов из рапонтика в различных отраслях животноводства. Новые рекомендуемые дозы составляют 20 г сухого вещества на 1 т живой массы.

РОССИЙСКАЯ АКАДЕМИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК РОССИЙСКАЯ АКАДЕМИЯ НАУК МИНИСТЕРСТВО НАУКИ И ТЕХНОЛОГИЙ РФ

ВНИИ селекции и семеноводства овощных культур РАСХН
Институт фундаментальных проблем биологии РАН
ВНИИ овощеводства РАСХН
ООО "Фитоэкология"

Ш МЕЖДУНАРОДНЫЙ СИМПОЗИУМ

"НОВЫЕ И НЕТРАДИЦИОННЫЕ РАСТЕНИЯ И ПЕРСПЕКТИВЫ ИХ ИСПОЛЬЗОВАНИЯ"

(21-25 ИЮНЯ 1999)

Труды симпозиума

Москва – Пущино 1999

РОССИЙСКАЯ АКАДЕМИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК РОССИЙСКАЯ АКАДЕМИЯ НАУК МИНИСТЕРСТВО НАУКИ И ТЕХНОЛОГИЙ РФ ВНИИ селекции и семеноводства овощных культур РАСХН Институт фундаментальных проблем биологии РАН ВНИИ овощеводства РАСХН ООО "Фитоэкология"

Ш МЕЖДУНАРОДНЫЙ СИМПОЗИУМ

"НОВЫЕ И НЕТРАДИЦИОННЫЕ РАСТЕНИЯ И ПЕРСПЕКТИВЫ ИХ ИСПОЛЬЗОВАНИЯ"

(21-25 ИЮНЯ 1999., г. Пущино)

Труды симпозиума

T. III

Москва – Пущино 1999 ISB N – 5 – 7139 – 0057 - 8

продуктов лечебно-профилактического назначения	415
Р. Г. Кондратенко, Р. К. Еркинбаева, Е. А. Назаренко Сравнительный анализ комплекса	
муки различных сортов	422
Ю. А. Коплетев, В. А. Миренсков, К. А. Атеев, Л. Д. Агеева Комплексное использование	
плодон эбыкновенной	425
О. А. Кораблева Определение сроков уборки, режимов сушки и хранения пряного сырья	427
Л. В. Кухарева Интродукция и использование пряно-ароматических и лекарственных	
растений в гонцевой приышленности и медлание	429
Е. Л. Маланкова, Л. Г. Ковтун, Н. В. Толичева Применение природных	
красителей для крапления текстильных материапов	432
В. В. Мухон, М. М. Боярченкова, Н. С. Кузнецова Особенности приготовления	
короткого льноволожна при неградиционном его использования	. 435
О. А. Мыльникова, Л. И. Нюколаева, Г. Ф. Фролова, Е. В. Шмилт Разработка техн	DAOING
гюреработки растительного сырья для лечебно-профилактического питания	438
О.Э. Оразов, А. Ю. Кулагия, В. С. Никитина Перспектилы получения	
Р-ентамичных препаратов из листьев видов рода Salix L.	441
Л. П. Пащенко, И. М. Тареева, А. В. Любарь Белоклитидные комплексы из	
растительного сырья: характеристики и использование в технологии хлеба	444
Л. П. Папкачно, Л. В. Стимакова, И. М. Тареева Структура белоксодержащего	
продукта из корнандра	447
С. В. Первушкин Гель " Спирулина" - новая лекарственная форма ранозаживаемощего	
PERCENTAGE	450
Г. К. Подпоринова Совершенствование технологии производства жищентрата сладких	
BULLECTO CTENER	453
Н. С. Родононова, К. К. Полинский, Л.Э. Глаголева Перспективы	
Использования неградиционных растений в технологии молочных продуктов	456
А.Ф.Сидоренко, К.М.Речников, Р.А Кашук, Н.Е.Орлова, З. С. Мохаммед. Artemisia	
abrotanum-перспективный источных эфирного масла для медицинского применения	459
Н. В. Тареева, А. Ф. Азаркова, А. Е. Бурова, А. А. Кирьянов В. И. Глызин	
К комплексной переработке плодов расторопили ожинистой	462
Н. П. Тимофеев Новая технология и производственная эффективность	
высококачественного распительного сырья рапонтика сафлоровидного	465
К. А. Трескунов, Б. А. Комаров, О. К. Трескунова, А. Б. Горопістченко	
Компьютерная фототерания, фитохитодез в медиционе 21 века	468
H. C. Chunca & M. Iturriquetro A. A. Troductron T. C. Transcon A. M. Bilitar	